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Network dynamics
Jamming is limited in
scale-free systems

A large number of complex networks are
scale-free"” — that is, they follow a power-
law degree distribution. Here we propose
that the emergence of many scale-free net-
works is tied to the efficiency of transport
and flow processing across these structures.
In particular, we show that for large net-
works on which flows are influenced or
generated by gradients of a scalar distrib-
uted on the nodes, scale-free structures will
ensure efficient processing, whereas struc-
tures that are not scale-free, such as random
graphs’, will become congested.

Many transport processes are induced by
the existence of local gradients of some enti-
ty such as chemical potential, temperature or
concentration. Gradients will also naturally
generate, or influence, flows in complex net-
works. For example, in the case of informa-
tion networks, properties of the nodes (such
as rate of processing and adequacy) will
generate a bias (formulated as a gradient cri-
terion) in the way information is transmit-
ted from a node to its neighbours. Specific
examples include the World Wide Web, dis-
tributed computing’ and social networks
with competitive dynamics’.

A simple model of a transport process
begins by assuming that there are N nodes
whose connections are described by a fixed
substrate network, S. Associated with each
node i is a non-degenerate scalar, h;, which
describes the ‘potential’ of the node. Then
the gradient network can be constructed
as the collection of directed links pointing
from each node to whichever of its near-
neighbours on S or itself has the highest
potential. It can be shown that all non-
degenerate gradient networks are forests —
that is, they have no loops (except for self-
loops) and consist only of trees. Further-
more, if S is a simple random graph’, in
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which each pair of nodes is linked with prob-
ability P, and the scalars ; are independent
identically distributed random variables,
then the distribution of the number of links
pointing to each node (the in-degree distrib-
ution) becomes (equation (1); derivation to
be published elsewhere)

R()= % > E"; _ﬂ (1=p(1—=P)")N """ (p(1 - p)r)!
In the limit N — o0 and P — 0, such that the
average degree z= NP =constant>> 1, the
exact degree distribution (equation (1))
becomes the power law R(I) = I, with a
finite-size cut-off at [.=z (Fig. la). In this
limit, therefore, gradient networks are scale-
free. This is surprising® because the substrate
Sis not scale-free,and in the same limit it has
a ‘bell-curve’ degree distribution. Alterna-
tively, if the substrate network Sis scale-free,
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Figure 1 Degree distributions of gradient networks and jamming.
a, Comparison between the exact formula (equation (1), green
line) and numerical simulations (ellipses). Here N=1,000,
P=0.1 (z=100); slope (dashed red line) is — 1. b, Degree distri-
butions of the gradient network and the substrate, when the sub-
strate is a Barabasi—Albert scale-free graph with parameter m (for
m=1, in black: R(), circles; P(k), full line. For m=3, in purple:
R(), diamonds; P(k), dashed ling); N=10°. ¢, Jamming coeffi-
cient J for random graphs (circles, P=0.05; diamonds, P=0.1;
orange line, P=0.05, exact expression; red line, P=0.1, exact
expression) and scale-free networks (pink, m=1; green, m=3).
Each data point is the average of 10* runs in a and 10° runs in b.
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as in a Barabdasi—Albert network’, then the
associated gradient network is also scale-free
(Fig. 1b) and is characterized by the same
exponent.

For a network S, where the flow is
processed at nodes in a finite time (such as in
the routing of a packet), the quality of flow
processing can be quantified by considering
the jamming or congestion factor, which is
defined as (equation (2))

]=1_<<me>> o
send  [j

network
where N,

eceive 18 the number of nodes that
receive gradient flow and N, is the number
of nodes that send it. Note that Jis a queuing
characteristic, rather than an actual
throughput measure. Certainly, 0=J=1,
with J=1 corresponding to maximal conges-
tion (vanishing number of receivers/proces-
sors) and J=0 to no congestion. For a ran-
dom substrate network, the expression of J
simply follows from equations (1) and (2)
which, in the large network scaling limit,
where Pis constantand N— %, becomes

N {1 +0 (%ﬂ -1

N ln(l_%;')
where O(1/N) indicates corrections of order
1/N.

Random networks therefore become
maximally congested in that limit. For scale-
free networks, however, the conclusion in
the same limit is drastically different. In that
case, J tends to a positive constant bounded
away from unity — that is, scale-free net-
works are not prone to jamming. Figure 1c
compares the congestion as a function of
N for both random and scale-free substrate
networks.
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